

O REPRESENTATION EQUIVALENT NEURAL OPERATORS

emmanuel de bézenac, ETH Zurich

in collaboration with

bogdan raonić francesca bartolucci roberto molinaro

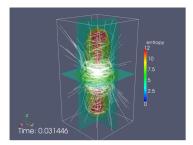
tobias rohner

tim de ryck

rima alaifari

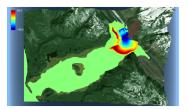
siddhartha mishra

- What are neural operators for solving PDEs?
- Are neural operators really operators?
- How can we correctly define neural operators?
- Can construct practical ones?





Supernovas



20150128/00 T-33

Clouds

Tsunamis

Theory

■ We want to solve the PDE :

$$\mathcal{F}(u, p) = 0, x \in \Omega$$

 $B(u, p) = 0, x \in \partial \Omega$

■ *p* input, e.g. initial condition

Theory

• We want to solve the PDE :

$$\mathcal{F}(u, p) = 0, x \in \Omega$$

 $B(u, p) = 0, x \in \partial \Omega$

- *p* input, e.g. initial condition
- *u*, *p* lie in a (potentially infinite dim) function spaces *X*, *Y*

Theory

■ We want to solve the PDE :

$$\mathcal{F}(u, p) = 0, x \in \Omega$$

 $B(u, p) = 0, x \in \partial \Omega$

- *p* input, e.g. initial condition
- *u*, *p* lie in a (potentially infinite dim) function spaces *X*, *Y*
- \blacksquare consider solution operator ${\cal G}$

$$\mathcal{G}: \mathcal{X} \to \mathcal{Y},$$

 $p \to u$

Theory

• We want to solve the PDE :

 $\mathfrak{F}(u,p) = 0, \ x \in \Omega$ $B(u,p) = 0, \ x \in \partial \Omega$

- *p* input, e.g. initial condition
- *u*, *p* lie in a (potentially infinite dim) function spaces X, Y
- \blacksquare consider solution operator ${\mathcal G}$

$$\mathcal{G}: \mathcal{X} \to \mathcal{Y},$$

 $p \to u$

Practice

Only finite number of computations,

Theory

• We want to solve the PDE :

$$\mathfrak{F}(u,p) = 0, x \in \Omega$$

 $B(u,p) = 0, x \in \partial \Omega$

- *p* input, e.g. initial condition
- *u*, *p* lie in a (potentially infinite dim) function spaces *X*, *Y*
- \blacksquare consider solution operator ${\mathcal G}$

$$\begin{aligned} \mathcal{G}: \mathcal{X} \to \mathcal{Y}, \\ p \to u \end{aligned}$$

Practice

- Only finite number of computations,
- need to discretize u, p e.g. on a regular grid Δ

Theory

We want to solve the PDE :

$$\mathfrak{F}(u,p) = 0, x \in \Omega$$

 $B(u,p) = 0, x \in \partial \Omega$

- *p* input, e.g. initial condition
- *u*, *p* lie in a (potentially infinite dim) function spaces X, Y
- \blacksquare consider solution operator ${\mathcal G}$

$$\mathcal{G}: \mathcal{X} \to \mathcal{Y},$$

 $p \to u$

Practice

- Only finite number of computations,
- need to discretize u, p e.g. on a regular grid Δ
- consider discrete spaces X, Y

Theory

We want to solve the PDE :

$$\mathfrak{F}(u,p) = 0, x \in \Omega$$

 $B(u,p) = 0, x \in \partial \Omega$

- *p* input, e.g. initial condition
- *u*, *p* lie in a (potentially infinite dim) function spaces X, Y
- \blacksquare consider solution operator ${\cal G}$

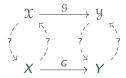
$$\mathcal{G}: \mathcal{X} \to \mathcal{Y},$$

 $p \to u$

Practice

- Only finite number of computations,
- need to discretize u, p e.g. on a regular grid ∆
- consider discrete spaces X, Y
- consider approximation G $G: X \to Y,$ $p_{\Delta} \to u_{\Delta}$

Link between discrete and continuous



Having an operator perspective is very important :

- the solution lies in this function space,
- quantifying discrepancy between discrete and continuous solutions is at the basis of numerical analysis.
- Essential for structure preserving methods, as symmetries are at the operator level, etc...

For this reason,

• solution operator \mathcal{G} approximated with **neural operator** \mathcal{G}_{θ} ,

• \mathcal{G}_{θ} mapping from functions to functions :

 $\mathcal{G}_{ heta}: \mathcal{X}
ightarrow \mathcal{Y},$ p
ightarrow u

- potential for deep learning to drastically accelerate simulations,
- can be applied even when pde is unknown (e.g. climate)

Discretization invariance

Mesh refinement

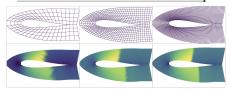
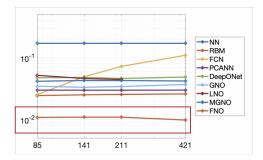


Figure 1: Discretization Invariance An discretization-invariant operator has convergent predictions on a mesh refinement.



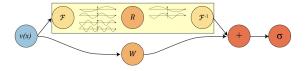


Figure 2 - layer of the Fourier neural operator ?

■ sequence of layers, as in classical nns

$$\mathcal{G} = \mathcal{N}_L \circ \mathcal{N}_{L-1} \circ \dots \circ \mathcal{N}_1$$
$$(\mathcal{N}_\ell v)(x) = \sigma \left(A_\ell v(x) + B_\ell(x) + \mathcal{K}_\ell v(x) \right)$$

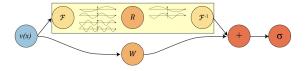


Figure 2 - layer of the Fourier neural operator ?

sequence of layers, as in classical nns

$$\mathcal{G} = \mathcal{N}_L \circ \mathcal{N}_{L-1} \circ \dots \circ \mathcal{N}_1$$
$$(\mathcal{N}_\ell v)(x) = \sigma \left(A_\ell v(x) + B_\ell(x) + \mathcal{K}_\ell v(x) \right)$$

novelty : layers defined as mappings from functions to functions

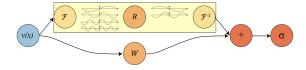


Figure 3 - layer of the Fourier neural operator

■ for example, continuous convolution with Fourier layer :

$$\mathcal{K}_\ell v(x) = \int\limits_D k_\ell(x-y)v(y)dy = \mathcal{F}^{-1}(\mathcal{R}_ heta\odot\mathcal{F}(v))(x)$$

claim : gives ability to handle different resolutions

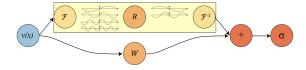


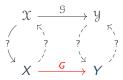
Figure 3 - layer of the Fourier neural operator

■ for example, continuous convolution with Fourier layer :

$$\mathcal{K}_{\ell}v(x) = \int\limits_{D} k_{\ell}(x-y)v(y)dy = \mathcal{F}^{-1}(\mathcal{R}_{ heta}\odot\mathcal{F}(v))(x)$$

claim : gives ability to handle different resolutions

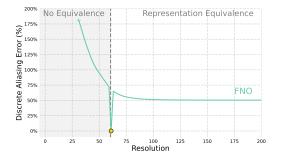
- state of the art for many PDEs, claims to handle functions
- claim to be discretization invariant,
- how are these computed on a computer?



• in practice, all computations done discretely using G, not \mathcal{G}

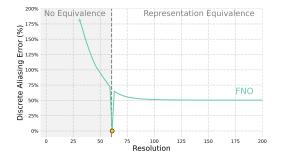
- input and output function sampled on a grid
- DFT is used instead of Fourier transform
- activations computed on the grid (not the function)
- Ink between operator \mathcal{G} and discrete map G?

Discrete representations not equivalent



- **u** random input $u \in \mathbb{R}^{61}$ and target data $v \in \mathbb{R}^{61}$, $u_i, v_i \sim \mathcal{G}(0, 1)$
- train mapping G to regress $u \rightarrow v$
- after training to 0 loss, change resolution and compute discrepancy

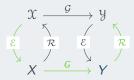
Discrete representations not equivalent



- random input $u \in \mathbb{R}^{61}$ and target data $v \in \mathbb{R}^{61}$, $u_i, v_i \sim \mathcal{G}(0, 1)$
- train mapping G to regress $u \rightarrow v$
- after training to 0 loss, change resolution and compute discrepancy
- hints at discrepancy between continuous and discrete
- a bit of an extreme case, but shows that
- discretization invariance is only a property at the limit, does not say anything for practical resolutions

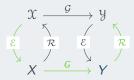
Representation equivalent neural operators (ReNO)

Couple (G, \mathcal{G}) , such that the diagram commutes :



Representation equivalent neural operators (ReNO)

Couple (G, \mathcal{G}) , such that the diagram commutes :

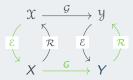


■ i.e. discrepancy between continuous and discrete, aka *aliasing*

$$\varepsilon(G, \mathcal{G}) = \mathcal{G} - \mathcal{R} \circ G \circ \mathcal{E} = 0,$$

Representation equivalent neural operators (ReNO)

Couple (G, \mathcal{G}) , such that the diagram commutes :



■ i.e. discrepancy between continuous and discrete, aka *aliasing*

$$\varepsilon(G, \mathcal{G}) = \mathcal{G} - \mathcal{R} \circ G \circ \mathcal{E} = 0,$$

■ *X*, *Y* separable Hilbert spaces, e.g. bandlimited functions, spanned by wavelets, fourier series coefficients, etc...

layer-wise Instantiation

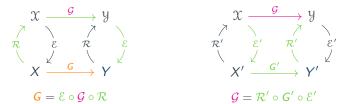
Design each layer $(\mathcal{G}_{\ell}, \mathcal{G}_{\ell})$ such that diagram commutes :

$$\mathcal{G}_{\ell} = \mathcal{R} \circ \mathit{N}_{\ell} \circ \mathcal{E}$$

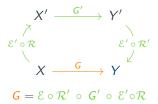
composition of layers is also a ReNO

Equivalence between discrete representations

Consider two discretizations G and G' of \mathcal{G} (e.g. on different grids).

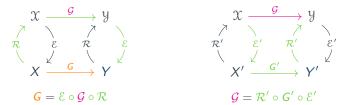


If both diagrams commute, discrete representations are equivalent :



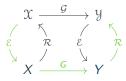
Equivalence between discrete representations

Consider two discretizations G and G' of \mathcal{G} (e.g. on different grids).



If both diagrams commute, discrete representations are equivalent :

If not $\varepsilon(G, G) \neq 0$, potential discrepancy at different resolutions.

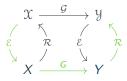


Instantiation : Bandlimited spaces

input, output spaces : \mathcal{X}, \mathcal{Y} bandlimited functions,

$$\mathcal{E}(v) = \{f(x_i)\}_{1,...,n}, \qquad \mathcal{R}(v)(x) = \sum_{i=1}^n v(x_i) \operatorname{sinc}(x - x_i)$$

Natural spaces for point-wise evaluations on cartesian grid,



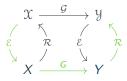
Instantiation : Bandlimited spaces

input, output spaces : \mathcal{X}, \mathcal{Y} bandlimited functions,

$$\mathcal{E}(v) = \{f(x_i)\}_{1,...,n}, \qquad \mathcal{R}(v)(x) = \sum_{i=1}^n v(x_i) \operatorname{sinc}(x - x_i)$$

Natural spaces for point-wise evaluations on cartesian grid,

Nyquist-Shannon : if grid dense enough, bijection between \mathfrak{X} and X



Instantiation : Bandlimited spaces

input, output spaces : \mathcal{X}, \mathcal{Y} bandlimited functions,

$$\mathcal{E}(v) = \{f(x_i)\}_{1,...,n}, \qquad \mathcal{R}(v)(x) = \sum_{i=1}^n v(x_i) \operatorname{sinc}(x - x_i)$$

Natural spaces for point-wise evaluations on cartesian grid,

- Nyquist-Shannon : if grid dense enough, bijection between \mathcal{X} and X
- $\varepsilon(G, G) = G \mathcal{R} \circ G \circ \mathcal{E}$ reduces to classical aliasing.

going back to FNO

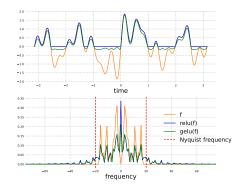
per layer analysis

Continuous and discrete convolutions equivalent,

going back to FNO

per layer analysis

- Continuous and discrete convolutions equivalent,
- Activation function is not : c(G,G) ≠ 0, i.e. diagram does not commute



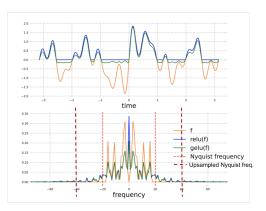
New convolutional based architecture

We propose to

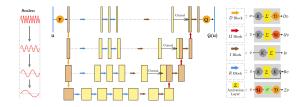
- Fix the activation function,
- Go back to standard convolutions (Fourier not essential),

Just as in StyleGAN3, new activation :

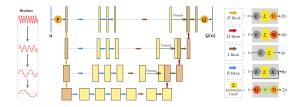
- upsample
- activation
- downsample



a convolutional based neural operator (CNO)



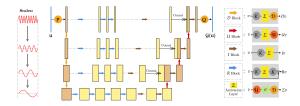
a convolutional based neural operator (CNO)



convolution operation, implemented with simple convs :

$$\mathcal{K}_{\ell} = \sum_{i,j=1}^{k} k_{ij} \cdot \delta_{z_{ij}}, \qquad \mathcal{K}_{\ell} v(x) = \int_{D} \mathcal{K}_{\ell}(x-y) v(y) dy$$

a convolutional based neural operator (CNO)



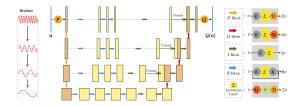
convolution operation, implemented with simple convs :

$$\mathcal{K}_{\ell} = \sum_{i,j=1}^{k} k_{ij} \cdot \delta_{z_{ij}}, \qquad \mathcal{K}_{\ell} v(x) = \int_{D} \mathcal{K}_{\ell}(x-y) v(y) dy$$

activation as in StyleGAN3 with up/down sampling

 $\Sigma(f)(x) = \mathcal{D} \circ \sigma \circ \mathcal{U}$

a convolutional based neural operator (CNO)



convolution operation, implemented with simple convs :

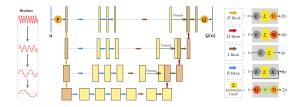
$$K_{\ell} = \sum_{i,j=1}^{k} k_{ij} \cdot \delta_{z_{ij}}, \qquad \mathcal{K}_{\ell} v(x) = \int_{D} K_{\ell}(x-y)v(y)dy$$

activation as in StyleGAN3 with up/down sampling

$$\Sigma(f)(x) = \mathcal{D} \circ \sigma \circ \mathcal{U}$$

 \blacksquare upsampling ${\mathcal U}$ and downsampling ${\mathcal D}$: interpolation with sinc filter

a convolutional based neural operator (CNO)



convolution operation, implemented with simple convs :

$$K_{\ell} = \sum_{i,j=1}^{k} k_{ij} \cdot \delta_{z_{ij}}, \qquad \mathcal{K}_{\ell} v(x) = \int_{D} K_{\ell}(x-y)v(y)dy$$

activation as in StyleGAN3 with up/down sampling

$$\Sigma(f)(x) = \mathcal{D} \circ \sigma \circ \mathcal{U}$$

- \blacksquare upsampling ${\mathcal U}$ and downsampling ${\mathcal D}$: interpolation with sinc filter
- these operations all have a (unique) discrete N_{ℓ} (approximately) $\mathcal{G}_{\ell}(v) = \mathcal{R} \circ N_{\ell} \circ \mathcal{E}(v)$ for all $v \in \mathcal{X}$

- preservation of continuous structures, translation equivariance (better generalization ?)
- cno able to process at different grids, not restricted to fno layer
- representation equivalence

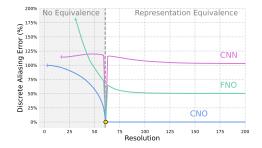


Table 1 – Relative median L^1 test errors.

	In/Out	FFNN	GT	UNet	ResNet	DON	FNO	CNO
Poisson	In	5.74%	2.77%	0.71%	0.43%	12.92%	4.98%	0.21%
Equation	Out	5.35%	2.84%	1.27%	1.10%	9.15%	7.05%	0.27%
Wave	In	2.51%	1.44%	1.51%	0.79%	2.26%	1.02%	0.63%
Equation	Out	3.01%	1.79%	2.03%	1.36%	2.83%	1.77%	1.17%
Smooth	In	7.09%	0.98%	0.49%	0.39%	1.14%	0.28%	0.24%
Transport	Out	650.6%	875.4%	1.28%	0.96%	157.2%	3.90%	0.46%
Discontinuous	In	13.0%	1.55%	1.31%	1.01%	5.78%	1.15%	1.01%
Transport	Out	257.3%	22691.1%	1.35%	1.16%	117.1%	2.89%	1.09%
Allen-Cahn	In	18.27%	0.77%	0.82%	1.40%	13.63%	0.28%	0.54%
Equation	Out	46.93%	2.90%	2.18%	3.74%	19.86%	1.10%	2.23%
Navier-Stokes	In	8.05%	4.14%	3.54%	3.69%	11.64%	3.57%	2.76%
Equations	Out	16.12%	11.09%	10.93%	9.68%	15.05%	9.58%	7.04%
Darcy	In	2.14%	0.86%	0.54%	0.42%	1.13%	0.80%	0.38%
Flow	Out	2.23%	1.17%	0.64%	0.60%	1.61%	1.11%	0.50%
Compressible	In	0.78%	2.09%	0.38%	1.70%	1.93%	0.44%	0.35%
Euler	Out	1.34%	2.94%	0.76%	2.06%	2.88%	0.69%	0.59%

Table 1 – Relative median L^1 test errors.

	In/Out	FFNN	GT	UNet	ResNet	DON	FNO	CNO
Poisson	In	5.74%	2.77%	0.71%	0.43%	12.92%	4.98%	0.21%
Equation	Out	5.35%	2.84%	1.27%	1.10%	9.15%	7.05%	0.27%
Wave	In	2.51%	1.44%	1.51%	0.79%	2.26%	1.02%	0.63%
Equation	Out	3.01%	1.79%	2.03%	1.36%	2.83%	1.77%	1.17%
Smooth	In	7.09%	0.98%	0.49%	0.39%	1.14%	0.28%	0.24%
Transport	Out	650.6%	875.4%	1.28%	0.96%	157.2%	3.90%	0.46%
Discontinuous	In	13.0%	1.55%	1.31%	1.01%	5.78%	1.15%	1.01%
Transport	Out	257.3%	22691.1%	1.35%	1.16%	117.1%	2.89%	1.09%
Allen-Cahn	In	18.27%	0.77%	0.82%	1.40%	13.63%	0.28%	0.54%
Equation	Out	46.93%	2.90%	2.18%	3.74%	19.86%	1.10%	2.23%
Navier-Stokes	In	8.05%	4.14%	3.54%	3.69%	11.64%	3.57%	2.76%
Equations	Out	16.12%	11.09%	10.93%	9.68%	15.05%	9.58%	7.04%
Darcy	In	2.14%	0.86%	0.54%	0.42%	1.13%	0.80%	0.38%
Flow	Out	2.23%	1.17%	0.64%	0.60%	1.61%	1.11%	0.50%
Compressible	In	0.78%	2.09%	0.38%	1.70%	1.93%	0.44%	0.35%
Euler	Out	1.34%	2.94%	0.76%	2.06%	2.88%	0.69%	0.59%

grid search for all baselines,

Table 1 – Relative median L^1 test errors.

	In/Out	FFNN	GT	UNet	ResNet	DON	FNO	CNO
Poisson	In	5.74%	2.77%	0.71%	0.43%	12.92%	4.98%	0.21%
Equation	Out	5.35%	2.84%	1.27%	1.10%	9.15%	7.05%	0.27%
Wave	In	2.51%	1.44%	1.51%	0.79%	2.26%	1.02%	0.63%
Equation	Out	3.01%	1.79%	2.03%	1.36%	2.83%	1.77%	1.17%
Smooth	In	7.09%	0.98%	0.49%	0.39%	1.14%	0.28%	0.24%
Transport	Out	650.6%	875.4%	1.28%	0.96%	157.2%	3.90%	0.46%
Discontinuous	In	13.0%	1.55%	1.31%	1.01%	5.78%	1.15%	1.01%
Transport	Out	257.3%	22691.1%	1.35%	1.16%	117.1%	2.89%	1.09%
Allen-Cahn	In	18.27%	0.77%	0.82%	1.40%	13.63%	0.28%	0.54%
Equation	Out	46.93%	2.90%	2.18%	3.74%	19.86%	1.10%	2.23%
Navier-Stokes	In	8.05%	4.14%	3.54%	3.69%	11.64%	3.57%	2.76%
Equations	Out	16.12%	11.09%	10.93%	9.68%	15.05%	9.58%	7.04%
Darcy	In	2.14%	0.86%	0.54%	0.42%	1.13%	0.80%	0.38%
Flow	Out	2.23%	1.17%	0.64%	0.60%	1.61%	1.11%	0.50%
Compressible	In	0.78%	2.09%	0.38%	1.70%	1.93%	0.44%	0.35%
Euler	Out	1.34%	2.94%	0.76%	2.06%	2.88%	0.69%	0.59%

- grid search for all baselines,
- convolutional architectures very good across many PDEs,

Table 1 – Relative median L^1 test errors.

	In/Out	FFNN	GT	UNet	ResNet	DON	FNO	CNO
Poisson	In	5.74%	2.77%	0.71%	0.43%	12.92%	4.98%	0.21%
Equation	Out	5.35%	2.84%	1.27%	1.10%	9.15%	7.05%	0.27%
Wave	In	2.51%	1.44%	1.51%	0.79%	2.26%	1.02%	0.63%
Equation	Out	3.01%	1.79%	2.03%	1.36%	2.83%	1.77%	1.17%
Smooth	In	7.09%	0.98%	0.49%	0.39%	1.14%	0.28%	0.24%
Transport	Out	650.6%	875.4%	1.28%	0.96%	157.2%	3.90%	0.46%
Discontinuous	In	13.0%	1.55%	1.31%	1.01%	5.78%	1.15%	1.01%
Transport	Out	257.3%	22691.1%	1.35%	1.16%	117.1%	2.89%	1.09%
Allen-Cahn	In	18.27%	0.77%	0.82%	1.40%	13.63%	0.28%	0.54%
Equation	Out	46.93%	2.90%	2.18%	3.74%	19.86%	1.10%	2.23%
Navier-Stokes	In	8.05%	4.14%	3.54%	3.69%	11.64%	3.57%	2.76%
Equations	Out	16.12%	11.09%	10.93%	9.68%	15.05%	9.58%	7.04%
Darcy	In	2.14%	0.86%	0.54%	0.42%	1.13%	0.80%	0.38%
Flow	Out	2.23%	1.17%	0.64%	0.60%	1.61%	1.11%	0.50%
Compressible	In	0.78%	2.09%	0.38%	1.70%	1.93%	0.44%	0.35%
Euler	Out	1.34%	2.94%	0.76%	2.06%	2.88%	0.69%	0.59%

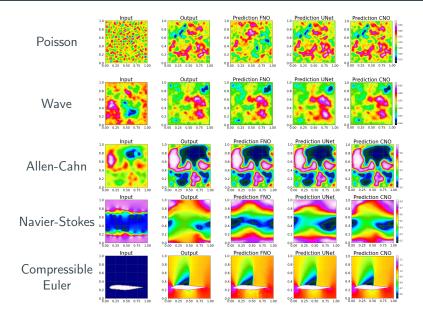
- grid search for all baselines,
- convolutional architectures very good across many PDEs,
- if not interested in different grids, and structure preservation, probably a good choice to consider UNets,

Table 1 – Relative median L^1 test errors.

	In/Out	FFNN	GT	UNet	ResNet	DON	FNO	CNO
Poisson	In	5.74%	2.77%	0.71%	0.43%	12.92%	4.98%	0.21%
Equation	Out	5.35%	2.84%	1.27%	1.10%	9.15%	7.05%	0.27%
Wave	In	2.51%	1.44%	1.51%	0.79%	2.26%	1.02%	0.63%
Equation	Out	3.01%	1.79%	2.03%	1.36%	2.83%	1.77%	1.17%
Smooth	In	7.09%	0.98%	0.49%	0.39%	1.14%	0.28%	0.24%
Transport	Out	650.6%	875.4%	1.28%	0.96%	157.2%	3.90%	0.46%
Discontinuous	In	13.0%	1.55%	1.31%	1.01%	5.78%	1.15%	1.01%
Transport	Out	257.3%	22691.1%	1.35%	1.16%	117.1%	2.89%	1.09%
Allen-Cahn	In	18.27%	0.77%	0.82%	1.40%	13.63%	0.28%	0.54%
Equation	Out	46.93%	2.90%	2.18%	3.74%	19.86%	1.10%	2.23%
Navier-Stokes	In	8.05%	4.14%	3.54%	3.69%	11.64%	3.57%	2.76%
Equations	Out	16.12%	11.09%	10.93%	9.68%	15.05%	9.58%	7.04%
Darcy	In	2.14%	0.86%	0.54%	0.42%	1.13%	0.80%	0.38%
Flow	Out	2.23%	1.17%	0.64%	0.60%	1.61%	1.11%	0.50%
Compressible	In	0.78%	2.09%	0.38%	1.70%	1.93%	0.44%	0.35%
Euler	Out	1.34%	2.94%	0.76%	2.06%	2.88%	0.69%	0.59%

- grid search for all baselines,
- convolutional architectures very good across many PDEs,
- if not interested in different grids, and structure preservation, probably a good choice to consider UNets,
- \blacksquare e.g. for Navier Stokes, 10^{3-4} speedups wrt sota GPU codes

qualitative results



 highlighted discrepancies between discrete and continuous operations in neural operators,

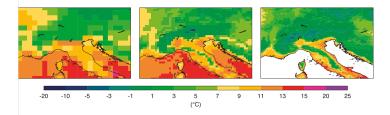
- highlighted discrepancies between discrete and continuous operations in neural operators,
- just as with any numerical method, we should pay attention to errors introduced by discretization,

- highlighted discrepancies between discrete and continuous operations in neural operators,
- just as with any numerical method, we should pay attention to errors introduced by discretization,
- we have formulated a framework to take them into account,

- highlighted discrepancies between discrete and continuous operations in neural operators,
- just as with any numerical method, we should pay attention to errors introduced by discretization,
- we have formulated a framework to take them into account,
- we have proposed an accurate architecture to

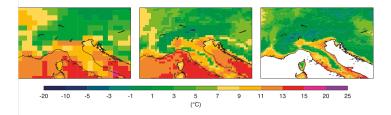
- highlighted discrepancies between discrete and continuous operations in neural operators,
- just as with any numerical method, we should pay attention to errors introduced by discretization,
- we have formulated a framework to take them into account,
- we have proposed an accurate architecture to
- can effectively link computations at different discretizations

limitations and future work



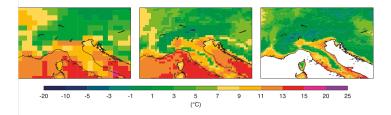
• only considered perfect equivalence between discrete and continuous \rightarrow relaxation to $\varepsilon(\mathcal{G}, \mathcal{G}) \leq \epsilon$?

limitations and future work



- only considered perfect equivalence between discrete and continuous \rightarrow relaxation to $\varepsilon(\mathfrak{G}, \mathfrak{G}) \leq \epsilon$?
- climate data often on different grids,
 - often different resolutions
 - there may be structures to preserve, e.g. conservation laws, etc,
 - a can we learn one neural network for datasets at different resolutions?
 - potentially useful to trade accuracy for compute and memory

limitations and future work



- only considered perfect equivalence between discrete and continuous \rightarrow relaxation to $\varepsilon(\mathfrak{G}, \mathfrak{G}) \leq \epsilon$?
- climate data often on different grids,
 - often different resolutions
 - there may be structures to preserve, e.g. conservation laws, etc,
 - a can we learn one neural network for datasets at different resolutions?
 - potentially useful to trade accuracy for compute and memory

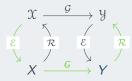
thanks for your time !

Appendix

Representation equivalent neural operators (ReNO)

Representation equivalent neural operators (ReNO)

Couple (G, \mathcal{G}) , such that the diagram commutes :



•
$$f = \sum_{i \in I} c_i \Phi_i(x)$$
. discretize : $f \xrightarrow{\mathcal{E}} c_i$ reconstruct : $c \xrightarrow{\mathcal{R}} f$

• $\{\Phi_i\}_{i \in I}$ basis or frame spanning \mathcal{X}, \mathcal{Y} ,

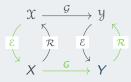
■ i.e. discrepancy between continuous and discrete, aka *aliasing*

$$\varepsilon(G, \mathcal{G}) = \mathcal{G} - \mathcal{R} \circ G \circ \mathcal{E} = 0$$

Representation equivalent neural operators (ReNO)

Representation equivalent neural operators (ReNO)

Couple (G, \mathcal{G}) , such that the diagram commutes :



•
$$f = \sum_{i \in I} c_i \Phi_i(x)$$
. discretize : $f \xrightarrow{\mathcal{E}} c_i$ reconstruct : $c \xrightarrow{\mathcal{R}} f$

- $\{\Phi_i\}_{i \in I}$ basis or frame spanning \mathcal{X}, \mathcal{Y} ,
- i.e. discrepancy between continuous and discrete, aka *aliasing*

$$\varepsilon(G, \mathcal{G}) = \mathcal{G} - \mathcal{R} \circ G \circ \mathcal{E} = 0,$$

■ *X*, *Y* separable Hilbert spaces, e.g. bandlimited functions, spanned by wavelets, fourier series coefficients, etc...

frame theory

synthesis and analysis operators

•
$$\mathcal{E}: \mathcal{X} \to \ell^2(I), \quad \mathcal{E}(\lbrace f_i \rbrace_{i \in I}) = \{\langle f, S^{-1}f_i \rangle\}_{i \in I}$$

$$\blacksquare \ \mathcal{R} \colon \ell^2(I) \to \mathcal{X}, \quad \mathcal{R}(\{c_i\}_{i \in I}) = \sum_{i \in I} c_i f_i,$$

$$S(f) = \sum_{i \in I} \langle f, f_i \rangle f_i$$

definition : a frame

A countable sequence of vectors $\{f_i\}_{i \in I}$ in \mathcal{X} is a frame for \mathcal{X} if there exists constants A, B > 0 such that for all $f \in \mathcal{X}$

$$A||f||^2 \le \sum_{i \in I} |\langle f, f_i \rangle|^2 \le B||f||^2$$

frame decomposition theorem

Every element in ${\cal X}$ can be *uniquely and stably* reconstructed from its frame coefficients by means of the reconstruction formula

$$f = \mathcal{RE}f = \sum_{i \in I} \langle f, S^{-1}f_i \rangle f_i = \sum_{i \in I} \langle f, f_i \rangle S^{-1}f_i,$$
(1)

where the series converge unconditionally.

Ablation Study

	\mathbf{In}/\mathbf{Out}	CNO	$\mathbf{CNO}\ \mathbf{w} / \mathbf{o}\ \mathbf{Filters}$	CNO w/o ResNets
Poisson Equation	In	0.21%	0.93%	0.85%
	Out	0.27%	1.65%	0.82%
Wave Equation	In	0.63%	0.59%	1.64%
	Out	1.17%	1.12%	1.64%
Smooth Transport	In	0.24%	0.31%	0.31%
	Out	0.46%	0.46%	0.76%
Discontinuous Transport	In	1.03%	1.21%	1.17%
	Out	1.18%	1.32%	1.60%
Allen-Cahn	In	0.54%	0.69%	0.71%
	Out	2.23%	2.16%	2.21%
Navier-Stokes	In	2.76%	3.20%	3.00%
	Out	7.04%	9.60%	5.85%
Darcy	In	0.38%	0.47%	0.41%
	Out	0.50%	0.65%	0.58%
Compressible Euler	In	0.35%	0.38%	0.37%
	Out	0.59%	0.62%	0.59%

Table 13: Relative median L^1 test errors, for both in- and out-of-distribution testing, for the CNO models and two ablation models.

× / /

Proposition 3.8. Let (U, u) be an ϵ -ReNO. For any two frame sequence pairs (Ψ, Φ) and (Ψ', Φ') satisfying conditions in Definition 3.4 and such that $\mathcal{M}_{\Phi'} \subseteq \mathcal{M}_{\Phi}$, we have

$$\|\tau(u, u')\| \le \frac{2\epsilon\sqrt{B_{\Psi}}}{\sqrt{A_{\Phi}}},$$