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Outline of the presentation

m What are neural operators for solving PDEs?
m Are neural operators really operators?
m How can we correctly define neural operators?

m Can construct practical ones?

2/29



entropy
12

Clouds

20150128/00 T+33
NEPAC ots)

Tsunamis Weather

3/29



Solving PDEs as approximating solution operators

Theory

m We want to solve the PDE :

F(u,p) =0, x € Q
B(u,p) =0, x € 92

m p input, e.g. initial condition
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Solving PDEs as approximating solution operators

Theor
y Practice

We want to solve the PDE : .
- wan ! Only finite number of

F(u,p) =0, x€Q computations,
B(u,p) =0, x € 0Q

m need to discretize u, p e.g. on
a regular grid A

p input, e.g. initial condition
m u, p lie in a (potentially

infinite dim) function spaces m consider discrete spaces X, Y
X,y m consider approximation G
m consider solution operator G G: XY,
G:X=D, pPA — ua

p—u
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Link between discrete and continuous

Having an operator perspective is very important :

m the solution lies in this function space,

m quantifying discrepancy between discrete and continuous solutions is
at the basis of numerical analysis.

m Essential for structure preserving methods, as symmetries are at the
operator level, etc...
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Neural Operators

For this reason,

m solution operator G approximated with neural operator Gy,

m Gy mapping from functions to functions :

Go: X =),
p—u

m potential for deep learning to drastically accelerate simulations,

m can be applied even when pde is unknown (e.g. climate)
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Discretization invariance

Mesh refinement

Figure 1: Discretization Invariance

An discretization-invariant operator has g ions on a mesh
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a prototypical example : the Fourier neural operator (fno)

Figure 2 — layer of the Fourier neural operator ?

m sequence of layers, as in classical nns

G=N oN;_10...0Ny
(Ngv)(x) = o (Aev(x) 4+ Be(x) + Kev(x))

8/29



a prototypical example : the Fourier neural operator (fno)
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Figure 2 — layer of the Fourier neural operator ?

m sequence of layers, as in classical nns

G=N oN;_10...0Ny
(Ngv)(x) = o (Aev(x) 4+ Be(x) + Kev(x))

m novelty : layers defined as mappings from functions to functions
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a prototypical example : the Fourier neural operator (fno)

2L Tew

Figure 3 — layer of the Fourier neural operator

m for example, continuous convolution with Fourier layer :

Kovl) = [ = y)uly)dy =T (Ro 0 5())()

claim : gives ability to handle different resolutions
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a prototypical example : the Fourier neural operator (fno)

OS] Jaalc WA
Figure 3 — layer of the Fourier neural operator

m for example, continuous convolution with Fourier layer :

Kovl) = [ = y)uly)dy =T (Ro 0 5())()

claim : gives ability to handle different resolutions
m state of the art for many PDEs, claims to handle functions
m claim to be discretization invariant,

m how are these computed on a computer?
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m in practice, all computations done discretely using G, not §

— input and output function sampled on a grid
— DFT is used instead of Fourier transform
— activations computed on the grid (not the function)

m link between operator § and discrete map G 7
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Discrete representations not equivalent
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m random input u € R® and target data v € R, u;, v; ~ G(0,1)

m train mapping G to regress u — v
m after training to O loss, change resolution and compute discrepancy
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random input u € R® and target data v € R®, u;, v; ~ G(0,1)
train mapping G to regress u — v
m after training to O loss, change resolution and compute discrepancy

hints at discrepancy between continuous and discrete

a bit of an extreme case, but shows that

m discretization invariance is only a property at the limit, does not say
anything for practical resolutions
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Representation equivalent neural operators (ReNO)

Representation equivalent neural operators (ReNO)

Couple (G, G), such that the diagram commutes :

x —7— Y

N\ /
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Representation equivalent neural operators (ReNO)

Representation equivalent neural operators (ReNO)

Couple (G, G), such that the diagram commutes :

x —7— Y

N\ /

R &

/N
X Y

m i.e. discrepancy between continuous and discrete, aka aliasing

e(G,G)=G—RoGo& =0,

m X, separable Hilbert spaces, e.g. bandlimited functions, spanned by
wavelets, fourier series coefficients, etc...
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layer-wise Instantiation

layer-wise Instantiation

m Design each layer (Gs, Gy) such that diagram commutes :

Gr=RoNgo&

m composition of layers is also a ReNO
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Equivalence between discrete representations

Consider two discretizations G and G’ of G (e.g. on different grids).

x99y X —7— Y
\ AR 7N
R & R ¢ R e’ R’ &’
/ \ v \ Y \/
X % Y X/ G Y’
G=Eo0GoR G=R oG oé&

X/ G’ Y/
;T \
¢ R &' o R
X —° vy
G=E8oR o G o &0oR
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Equivalence between discrete representations

Consider two discretizations G and G’ of G (e.g. on different grids).

NN 2NN
R & R & R’ e’ R’ e’
l/ \ u"/ \ L/ \Z
X G \% X/ G Y/
G=Eo0GoR G=R oG o0&

m If not £(G,G) # 0, potential discrepancy at different resolutions.
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Instantiation

x#y}
e R e R
NN

X ——=Y

Instantiation : Bandlimited spaces

input, output spaces : X,Y bandlimited functions,

E(v) = {f(xi)}1,...n» R(v)(x) = Z v(x;)sinc(x — x;)

i=1

Natural spaces for point-wise evaluations on cartesian grid,
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Instantiation : Bandlimited spaces

input, output spaces : X,Y bandlimited functions,

EWV) ={f()}1m  R(V)(x) =D v(xi)sinc(x — x;)
i=1
Natural spaces for point-wise evaluations on cartesian grid,

Nyquist-Shannon : if grid dense enough, bijection between X and X

e(G,G) =G — R o G o & reduces to classical aliasing.

15/29



going back to FNO

per layer analysis

m Continuous and discrete convolutions equivalent,
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going back to FNO
per layer analysis

m Continuous and discrete convolutions equivalent,

m Activation function is not : (G, G) # 0, i.e. diagram does not
commute

---- Nyquist frequency
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New convolutional based architecture

We propose to

m Fix the activation function,

m Go back to standard convolutions (Fourier not essential),

Just as in StyleGAN3, new ac- -

tivation :
m upsample i i
030 ! 1
. . 1 1
025 1 =1=-1
m activation | T retn
i — gelu(f)
| dOWnsample o 1 H --4- Nyquist frequency
o0 : i - -: - Upsampled Nyquist freq.
PR W, =
1 ] ] 1
- f 0 4 w

o E
frequency
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a convolutional based neural operator (CNO)
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a convolutional based neural operator (CNO)
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a convolutional based neural operator (CNO)
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m convolution operation, implemented with simple convs :

K= Yo kybye  Kv) = [ Kibx—yvin)dy

ij=1 b
m activation as in StyleGAN3 with up/down sampling
Y(f)(x) =Doool

m upsampling U and downsampling D : interpolation with sinc filter
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a convolutional based neural operator (CNO)
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m convolution operation, implemented with simple convs :

rat B AP NS

K= Yo kybye  Kv) = [ Kibx—yvin)dy

ij=1 b
m activation as in StyleGAN3 with up/down sampling
Y(f)(x)=Dooold
m upsampling U and downsampling D : interpolation with sinc filter

m these operations all have a (unique) discrete N, (approximately)

Go(v)=RoNyo&(v) forall veX

18/29



results

m preservation of continuous structures, translation equivariance (better
generalization 7)

m cno able to process at different grids, not restricted to fno layer

m representation equivalence
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o 25 50 75 100 125 150 175 200
Resolution

19/29



quantitative results

Table 1 — Relative median L' test errors.

In/Out  FFNN GT UNet ResNet DON FNO CNO

Poisson In 5.74% 2.77% 0.71% 0.43% 12.92% 4.98% 0.21%
Equation Out 5.35% 2.84% 1.27% 1.10% 9.15% 7.05% 0.27%
Wave In 2.51% 1.44% 1.51% 0.79% 2.26% 1.02% 0.63%
Equation Out 3.01% 1.79% 2.03% 1.36% 2.83% 1.77% 1.17%
Smooth In 7.09% 0.98% 0.49% 0.39% 1.14% 0.28% 0.24%
Transport Out 650.6% 875.4% 1.28% 0.96% 157.2% 3.90% 0.46%
Discontinuous In 13.0% 1.55% 1.31% 1.01% 5.78% 1.15% 1.01%
Transport Out 257.3% 22691.1% 1.35% 1.16% 117.1% 2.89% 1.09%
Allen-Cahn In 18.27% 0.77% 0.82% 1.40% 13.63% 0.28% 0.54%
Equation Out 46.93% 2.90% 2.18% 3.74% 19.86% 1.10% 2.23%
Navier-Stokes In 8.05% 4.14% 3.54% 3.69% 11.64% 3.57% 2.76%
Equations Out 16.12% 11.09% 10.93%  9.68% 15.05% 9.58% 7.04%
Darcy In 2.14% 0.86% 0.54% 0.42% 1.13% 0.80% 0.38%
Flow Out 2.23% 1.17% 0.64% 0.60% 1.61% 1.11% 0.50%
Compressible In 0.78% 2.09% 0.38% 1.70% 1.93% 0.44% 0.35%
Euler Out 1.34% 2.94% 0.76% 2.06% 2.88% 0.69% 0.59%
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m grid search for all baselines,

m convolutional architectures very good across many PDEs,

m if not interested in different grids, and structure preservation,
probably a good choice to consider UNets,

m e.g. for Navier Stokes, 103~* speedups wrt sota GPU codes
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qualitative results

Output

Poisson

v

Prediction UNet
. v, *

bg' o]
et B

»
"

Wave

Allen-Cahn

800 025 030 075 1

Input

Navier-Stokes ..

Compressible ..

Euler "

0g
800 025 00 0ss 100

0 025 050 075 Lo

Output

o0g
800 025 00 075 100

Output

02 -

800 025 0s0 oss 100

% 025 030 075 100

o Prediction UNet

o0g -~
800 025 050 075 100

10, Prediction UNet
.

og
800 025 050 075 100
1 Prediction UNet

0s
0s
04
02
°8

0 025 050 075 100

0g =
80 025 0s0 0ss Loo
Prediction FNO

800 025 050 075 100

10, Prediction FNO 10, Prediction UNet

o o8
0 0 |
0t 0t
0.2 = 0.2 e
o

0g
8o0 o025 0s0 oss Loo 800 025 as0 os o0

Prediction CNO
N ;

0g
800 025 0s0 075 Lo

, Prediction CNO

g —
800 025 030 075 L0

Prediction CNO

w
o

o

M .

0 0.25 050 0.75 Lo




conclusion

m highlighted discrepancies between discrete and continuous operations
in neural operators,
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conclusion

highlighted discrepancies between discrete and continuous operations
in neural operators,

just as with any numerical method, we should pay attention to errors
introduced by discretization,

m we have formulated a framework to take them into account,

we have proposed an accurate architecture to

can effectively link computations at different discretizations
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limitations and future work

m only considered perfect equivalence between discrete and continuous
— relaxation to £(G, G) < €7
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limitations and future work

ﬁ
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m only considered perfect equivalence between discrete and continuous
— relaxation to £(G, G) < €7

m climate data often on different grids,

m often different resolutions

m there may be structures to preserve, e.g. conservation laws, etc,

m can we learn one neural network for datasets at different resolutions ?
m potentially useful to trade accuracy for compute and memory

m thanks for your time!
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Representation equivalent neural operators (ReNO)

Representation equivalent neural operators (ReNO)

Couple (G, G), such that the diagram commutes :
[

X —Y
N\ /
R e
/ \

X Y

. . £ R
mf= Zc,-d),-(x). discretize : f — ¢, reconstruct : ¢ —» f
i€l

m {®;};c/ basis or frame spanning X, ),

m i.e. discrepancy between continuous and discrete, aka aliasing

e(G,G)=G—RoGo& =0,
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Couple (G, G), such that the diagram commutes :
[

X —Y
N\ /
R e
/ \

X Y

. . £ R
mf= Zc,-d),-(x). discretize : f — ¢, reconstruct : ¢ —» f
i€l

{®;}ies basis or frame spanning X, ),

i.e. discrepancy between continuous and discrete, aka aliasing

e(G,G)=G—RoGo& =0,

X, separable Hilbert spaces, e.g. bandlimited functions, spanned by
wavelets, fourier series coefficients, etc...
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synthesis and analysis operators

mEX 2D, E{fYier) = {{f.S )} i

mR: £2( )% X R {C,},e/ ZC’ is
i€l

= S(F)= Y (F.F)f

iel

definition : a frame

A countable sequence of vectors {f;};c; in X is a frame for X if there
exists constants A, B > 0 such that for all f € X

AP <D< f. 6> < B|f|
iel

m e.g. orthogonal basis :A=B =1,
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frame theory

frame decomposition theorem

Every element in X' can be uniquely and stably reconstructed from its
frame coefficients by means of the reconstruction formula

f=REF=Y (F,STH)i=> (f,£)S'f, 1)

iel i€l

where the series converge unconditionally.
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Ablation Stu

Table 13: Relative median L' test errors, for both in- and out-of-distribution testing, for the
CNO models and two ablation models.

In/Out CNO CNO w/o Filters CNO w/o ResNets

Poisson Equation In 0.21% 0.93% 0.85%
Out  0.27% 1.65% 0.82%

Wave Equation In 0.63% 0.59% 1.64%
Out  117% 1.12% 1.64%

Smooth Transport In 0.24% 0.31% 0.31%
Out  0.46% 0.46% 0.76%

Discontinuous Transport In 1.03% 1.21% 117%
Out  1.18% 1.32% 1.60%

Allen-Cahn In 0.54% 0.69% 0.71%
Out 2.23% 2.16% 2.21%

Navier-Stokes In 2.76% 3.20% 3.00%
Out  7.04% 9.60% 5.85%

Darcy In 0.38% 0.47% 0.41%

Out  0.50% 0.65% 0.58%

Compressible Euler In 0.35% 0.38% 0.37%
Out  0.59% 0.62% 0.59%
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Proposition 3.8. Let (U, u) be an e—ReNO. For any two frame sequence pairs (¥, ®) and (V', @)
satisfying conditions in Definition[3.4 and such that Mgy C Mg, we have
2¢v/By

A

I (u, w)] <
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