
REPRESENTATION
EQUIVALENT
NEURAL OPERATORS

emmanuel de bézenac, ETH Zurich

in collaboration with

bogdan raonić francesca bartolucci roberto molinaro

tobias rohner tim de ryck rima alaifari siddhartha mishra

1/29

Outline of the presentation

What are neural operators for solving PDEs ?

Are neural operators really operators ?

How can we correctly define neural operators ?

Can construct practical ones ?

2/29

Supernovas Clouds

Tsunamis Weather

3/29

Solving PDEs as approximating solution operators

Theory

We want to solve the PDE :

F(u, p) = 0, x ∈ Ω

B(u, p) = 0, x ∈ ∂Ω

p input, e.g. initial condition

u, p lie in a (potentially
infinite dim) function spaces
X ,Y
consider solution operator G

G : X → Y,

p → u

Practice

Only finite number of
computations,

need to discretize u, p e.g. on
a regular grid ∆

consider discrete spaces X ,Y

consider approximation G

G : X → Y ,

p∆ → u∆

4/29

Solving PDEs as approximating solution operators

Theory

We want to solve the PDE :

F(u, p) = 0, x ∈ Ω

B(u, p) = 0, x ∈ ∂Ω

p input, e.g. initial condition
u, p lie in a (potentially
infinite dim) function spaces
X ,Y

consider solution operator G
G : X → Y,

p → u

Practice

Only finite number of
computations,

need to discretize u, p e.g. on
a regular grid ∆

consider discrete spaces X ,Y

consider approximation G

G : X → Y ,

p∆ → u∆

4/29

Solving PDEs as approximating solution operators

Theory

We want to solve the PDE :

F(u, p) = 0, x ∈ Ω

B(u, p) = 0, x ∈ ∂Ω

p input, e.g. initial condition
u, p lie in a (potentially
infinite dim) function spaces
X ,Y
consider solution operator G

G : X → Y,

p → u

Practice

Only finite number of
computations,

need to discretize u, p e.g. on
a regular grid ∆

consider discrete spaces X ,Y

consider approximation G

G : X → Y ,

p∆ → u∆

4/29

Solving PDEs as approximating solution operators

Theory

We want to solve the PDE :

F(u, p) = 0, x ∈ Ω

B(u, p) = 0, x ∈ ∂Ω

p input, e.g. initial condition
u, p lie in a (potentially
infinite dim) function spaces
X ,Y
consider solution operator G

G : X → Y,

p → u

Practice

Only finite number of
computations,

need to discretize u, p e.g. on
a regular grid ∆

consider discrete spaces X ,Y

consider approximation G

G : X → Y ,

p∆ → u∆

4/29

Solving PDEs as approximating solution operators

Theory

We want to solve the PDE :

F(u, p) = 0, x ∈ Ω

B(u, p) = 0, x ∈ ∂Ω

p input, e.g. initial condition
u, p lie in a (potentially
infinite dim) function spaces
X ,Y
consider solution operator G

G : X → Y,

p → u

Practice

Only finite number of
computations,

need to discretize u, p e.g. on
a regular grid ∆

consider discrete spaces X ,Y

consider approximation G

G : X → Y ,

p∆ → u∆

4/29

Solving PDEs as approximating solution operators

Theory

We want to solve the PDE :

F(u, p) = 0, x ∈ Ω

B(u, p) = 0, x ∈ ∂Ω

p input, e.g. initial condition
u, p lie in a (potentially
infinite dim) function spaces
X ,Y
consider solution operator G

G : X → Y,

p → u

Practice

Only finite number of
computations,

need to discretize u, p e.g. on
a regular grid ∆

consider discrete spaces X ,Y

consider approximation G

G : X → Y ,

p∆ → u∆

4/29

Solving PDEs as approximating solution operators

Theory

We want to solve the PDE :

F(u, p) = 0, x ∈ Ω

B(u, p) = 0, x ∈ ∂Ω

p input, e.g. initial condition
u, p lie in a (potentially
infinite dim) function spaces
X ,Y
consider solution operator G

G : X → Y,

p → u

Practice

Only finite number of
computations,

need to discretize u, p e.g. on
a regular grid ∆

consider discrete spaces X ,Y

consider approximation G

G : X → Y ,

p∆ → u∆

4/29

Link between discrete and continuous

X Y

X Y

G

? ?

G

? ?

Having an operator perspective is very important :

the solution lies in this function space,
quantifying discrepancy between discrete and continuous solutions is
at the basis of numerical analysis.
Essential for structure preserving methods, as symmetries are at the
operator level, etc...

5/29

Neural Operators

For this reason,

solution operator G approximated with neural operator Gθ,

Gθ mapping from functions to functions :

Gθ : X → Y,

p → u

potential for deep learning to drastically accelerate simulations,

can be applied even when pde is unknown (e.g. climate)

6/29

Discretization invariance

Figure 1 – Caption

7/29

a prototypical example : the Fourier neural operator (fno)

Figure 2 – layer of the Fourier neural operator ?

sequence of layers, as in classical nns

G = NL ◦NL−1 ◦ . . . ◦N1

(Nℓv)(x) = σ (Aℓv(x) + Bℓ(x) +Kℓv(x))

novelty : layers defined as mappings from functions to functions

8/29

a prototypical example : the Fourier neural operator (fno)

Figure 2 – layer of the Fourier neural operator ?

sequence of layers, as in classical nns

G = NL ◦NL−1 ◦ . . . ◦N1

(Nℓv)(x) = σ (Aℓv(x) + Bℓ(x) +Kℓv(x))

novelty : layers defined as mappings from functions to functions

8/29

a prototypical example : the Fourier neural operator (fno)

Figure 3 – layer of the Fourier neural operator

for example, continuous convolution with Fourier layer :

Kℓv(x) =

∫
D

kℓ(x − y)v(y)dy = F−1(Rθ ⊙ F(v))(x)

claim : gives ability to handle different resolutions

state of the art for many PDEs, claims to handle functions

claim to be discretization invariant,

how are these computed on a computer ?

9/29

a prototypical example : the Fourier neural operator (fno)

Figure 3 – layer of the Fourier neural operator

for example, continuous convolution with Fourier layer :

Kℓv(x) =

∫
D

kℓ(x − y)v(y)dy = F−1(Rθ ⊙ F(v))(x)

claim : gives ability to handle different resolutions

state of the art for many PDEs, claims to handle functions

claim to be discretization invariant,

how are these computed on a computer ?
9/29

FNO in practice

X Y

X Y

G

? ?

G

? ?

in practice, all computations done discretely using G , not G
– input and output function sampled on a grid
– DFT is used instead of Fourier transform
– activations computed on the grid (not the function)

link between operator G and discrete map G ?

10/29

Discrete representations not equivalent

0 25 50 75 100 125 150 175 200
Resolution

0%

25%

50%

75%

100%

125%

150%

175%

200%

Di
sc

re
te

 A
lia

sin
g

Er
ro

r (
%

)

FNO

No Equivalence Representation Equivalence

random input u ∈ R61 and target data v ∈ R61, ui , vi ∼ G(0, 1)
train mapping G to regress u → v
after training to 0 loss, change resolution and compute discrepancy

hints at discrepancy between continuous and discrete
a bit of an extreme case, but shows that
discretization invariance is only a property at the limit, does not say
anything for practical resolutions

11/29

Discrete representations not equivalent

0 25 50 75 100 125 150 175 200
Resolution

0%

25%

50%

75%

100%

125%

150%

175%

200%

Di
sc

re
te

 A
lia

sin
g

Er
ro

r (
%

)

FNO

No Equivalence Representation Equivalence

random input u ∈ R61 and target data v ∈ R61, ui , vi ∼ G(0, 1)
train mapping G to regress u → v
after training to 0 loss, change resolution and compute discrepancy

hints at discrepancy between continuous and discrete
a bit of an extreme case, but shows that
discretization invariance is only a property at the limit, does not say
anything for practical resolutions

11/29

Representation equivalent neural operators (ReNO)

Representation equivalent neural operators (ReNO)

Couple (G ,G), such that the diagram commutes :

X Y

X Y

G

E E

G

R R

i.e. discrepancy between continuous and discrete, aka aliasing

ε(G ,G) = G −R ◦ G ◦ E = 0,

X ,Y separable Hilbert spaces, e.g. bandlimited functions, spanned by
wavelets, fourier series coefficients, etc...

12/29

Representation equivalent neural operators (ReNO)

Representation equivalent neural operators (ReNO)

Couple (G ,G), such that the diagram commutes :

X Y

X Y

G

E E

G

R R

i.e. discrepancy between continuous and discrete, aka aliasing

ε(G ,G) = G −R ◦ G ◦ E = 0,

X ,Y separable Hilbert spaces, e.g. bandlimited functions, spanned by
wavelets, fourier series coefficients, etc...

12/29

Representation equivalent neural operators (ReNO)

Representation equivalent neural operators (ReNO)

Couple (G ,G), such that the diagram commutes :

X Y

X Y

G

E E

G

R R

i.e. discrepancy between continuous and discrete, aka aliasing

ε(G ,G) = G −R ◦ G ◦ E = 0,

X ,Y separable Hilbert spaces, e.g. bandlimited functions, spanned by
wavelets, fourier series coefficients, etc...

12/29

layer-wise Instantiation

layer-wise Instantiation

Design each layer (Gℓ,Gℓ) such that diagram commutes :

Gℓ = R ◦ Nℓ ◦ E

composition of layers is also a ReNO

13/29

Equivalence between discrete representations

Consider two discretizations G and G ′ of G (e.g. on different grids).

X Y

X Y

G

E E

G

R R

G = E ◦ G ◦ R

X Y

X ′ Y ′

G

E′ E′

G ′

R′ R′

G = R′ ◦ G ′ ◦ E′

If both diagrams commute, discrete representations are equivalent :

X ′ Y ′

X Y

G ′

E′ ◦R′

G

E′ ◦R

G = E ◦ R′ ◦ G ′ ◦ E
′◦R

If not ε(G ,G) ̸= 0, potential discrepancy at different resolutions.

14/29

Equivalence between discrete representations

Consider two discretizations G and G ′ of G (e.g. on different grids).

X Y

X Y

G

E E

G

R R

G = E ◦ G ◦ R

X Y

X ′ Y ′

G

E′ E′

G ′

R′ R′

G = R′ ◦ G ′ ◦ E′

If both diagrams commute, discrete representations are equivalent :

X ′ Y ′

X Y

G ′

E′ ◦R′

G

E′ ◦R

G = E ◦ R′ ◦ G ′ ◦ E
′◦R

If not ε(G ,G) ̸= 0, potential discrepancy at different resolutions.
14/29

Instantiation

X Y

X Y

G

E E

G

R R

Instantiation : Bandlimited spaces

input, output spaces : X,Y bandlimited functions,

E(v) = {f (xi)}1,...,n, R(v)(x) =
n∑

i=1

v(xi)sinc(x − xi)

Natural spaces for point-wise evaluations on cartesian grid,

Nyquist-Shannon : if grid dense enough, bijection between X and X

ε(G ,G) = G −R ◦ G ◦ E reduces to classical aliasing.

15/29

Instantiation

X Y

X Y

G

E E

G

R R

Instantiation : Bandlimited spaces

input, output spaces : X,Y bandlimited functions,

E(v) = {f (xi)}1,...,n, R(v)(x) =
n∑

i=1

v(xi)sinc(x − xi)

Natural spaces for point-wise evaluations on cartesian grid,

Nyquist-Shannon : if grid dense enough, bijection between X and X

ε(G ,G) = G −R ◦ G ◦ E reduces to classical aliasing.

15/29

Instantiation

X Y

X Y

G

E E

G

R R

Instantiation : Bandlimited spaces

input, output spaces : X,Y bandlimited functions,

E(v) = {f (xi)}1,...,n, R(v)(x) =
n∑

i=1

v(xi)sinc(x − xi)

Natural spaces for point-wise evaluations on cartesian grid,

Nyquist-Shannon : if grid dense enough, bijection between X and X

ε(G ,G) = G −R ◦ G ◦ E reduces to classical aliasing.

15/29

going back to FNO

per layer analysis

Continuous and discrete convolutions equivalent,

Activation function is not : ε(G ,G) ̸= 0, i.e. diagram does not
commute

3 2 1 0 1 2 3

time
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

60 40 20 0 20 40 60

frequency

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

f
relu(f)
gelu(f)
Nyquist frequency

16/29

going back to FNO

per layer analysis

Continuous and discrete convolutions equivalent,

Activation function is not : ε(G ,G) ̸= 0, i.e. diagram does not
commute

3 2 1 0 1 2 3

time
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

60 40 20 0 20 40 60

frequency

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

f
relu(f)
gelu(f)
Nyquist frequency

16/29

New convolutional based architecture

We propose to

Fix the activation function,
Go back to standard convolutions (Fourier not essential),

Just as in StyleGAN3, new ac-
tivation :

upsample
activation
downsample

17/29

a convolutional based neural operator (CNO)

convolution operation, implemented with simple convs :

Kℓ =
k∑

i,j=1

kij · δzij , Kℓv(x) =

∫
D

Kℓ(x − y)v(y)dy

activation as in StyleGAN3 with up/down sampling

Σ(f)(x) = D ◦ σ ◦ U

upsampling U and downsampling D : interpolation with sinc filter

these operations all have a (unique) discrete Nℓ (approximately)

Gℓ(v) = R ◦ Nℓ ◦ E(v) for all v ∈ X

continuous and discrete computations match for these operations

18/29

a convolutional based neural operator (CNO)

convolution operation, implemented with simple convs :

Kℓ =
k∑

i,j=1

kij · δzij , Kℓv(x) =

∫
D

Kℓ(x − y)v(y)dy

activation as in StyleGAN3 with up/down sampling

Σ(f)(x) = D ◦ σ ◦ U

upsampling U and downsampling D : interpolation with sinc filter

these operations all have a (unique) discrete Nℓ (approximately)

Gℓ(v) = R ◦ Nℓ ◦ E(v) for all v ∈ X

continuous and discrete computations match for these operations

18/29

a convolutional based neural operator (CNO)

convolution operation, implemented with simple convs :

Kℓ =
k∑

i,j=1

kij · δzij , Kℓv(x) =

∫
D

Kℓ(x − y)v(y)dy

activation as in StyleGAN3 with up/down sampling

Σ(f)(x) = D ◦ σ ◦ U

upsampling U and downsampling D : interpolation with sinc filter

these operations all have a (unique) discrete Nℓ (approximately)

Gℓ(v) = R ◦ Nℓ ◦ E(v) for all v ∈ X

continuous and discrete computations match for these operations

18/29

a convolutional based neural operator (CNO)

convolution operation, implemented with simple convs :

Kℓ =
k∑

i,j=1

kij · δzij , Kℓv(x) =

∫
D

Kℓ(x − y)v(y)dy

activation as in StyleGAN3 with up/down sampling

Σ(f)(x) = D ◦ σ ◦ U

upsampling U and downsampling D : interpolation with sinc filter

these operations all have a (unique) discrete Nℓ (approximately)

Gℓ(v) = R ◦ Nℓ ◦ E(v) for all v ∈ X

continuous and discrete computations match for these operations

18/29

a convolutional based neural operator (CNO)

convolution operation, implemented with simple convs :

Kℓ =
k∑

i,j=1

kij · δzij , Kℓv(x) =

∫
D

Kℓ(x − y)v(y)dy

activation as in StyleGAN3 with up/down sampling

Σ(f)(x) = D ◦ σ ◦ U

upsampling U and downsampling D : interpolation with sinc filter

these operations all have a (unique) discrete Nℓ (approximately)

Gℓ(v) = R ◦ Nℓ ◦ E(v) for all v ∈ X

continuous and discrete computations match for these operations

18/29

results

preservation of continuous structures, translation equivariance (better
generalization ?)

cno able to process at different grids, not restricted to fno layer

representation equivalence

0 25 50 75 100 125 150 175 200
Resolution

0%

25%

50%

75%

100%

125%

150%

175%

200%

Di
sc

re
te

 A
lia

sin
g

Er
ro

r (
%

)

CNN

FNO

CNO

No Equivalence Representation Equivalence

19/29

quantitative results

Table 1 – Relative median L1 test errors.
In/Out FFNN GT UNet ResNet DON FNO CNO

Poisson In 5.74% 2.77% 0.71% 0.43% 12.92% 4.98% 0.21%
Equation Out 5.35% 2.84% 1.27% 1.10% 9.15% 7.05% 0.27%

Wave In 2.51% 1.44% 1.51% 0.79% 2.26% 1.02% 0.63%
Equation Out 3.01% 1.79% 2.03% 1.36% 2.83% 1.77% 1.17%
Smooth In 7.09% 0.98% 0.49% 0.39% 1.14% 0.28% 0.24%

Transport Out 650.6% 875.4% 1.28% 0.96% 157.2% 3.90% 0.46%
Discontinuous In 13.0% 1.55% 1.31% 1.01% 5.78% 1.15% 1.01%

Transport Out 257.3% 22691.1% 1.35% 1.16% 117.1% 2.89% 1.09%
Allen-Cahn In 18.27% 0.77% 0.82% 1.40% 13.63% 0.28% 0.54%
Equation Out 46.93% 2.90% 2.18% 3.74% 19.86% 1.10% 2.23%

Navier-Stokes In 8.05% 4.14% 3.54% 3.69% 11.64% 3.57% 2.76%
Equations Out 16.12% 11.09% 10.93% 9.68% 15.05% 9.58% 7.04%

Darcy In 2.14% 0.86% 0.54% 0.42% 1.13% 0.80% 0.38%
Flow Out 2.23% 1.17% 0.64% 0.60% 1.61% 1.11% 0.50%

Compressible In 0.78% 2.09% 0.38% 1.70% 1.93% 0.44% 0.35%
Euler Out 1.34% 2.94% 0.76% 2.06% 2.88% 0.69% 0.59%

grid search for all baselines,
convolutional architectures very good across many PDEs,
if not interested in different grids, and structure preservation,
probably a good choice to consider UNets,
e.g. for Navier Stokes, 103−4 speedups wrt sota GPU codes

20/29

quantitative results

Table 1 – Relative median L1 test errors.
In/Out FFNN GT UNet ResNet DON FNO CNO

Poisson In 5.74% 2.77% 0.71% 0.43% 12.92% 4.98% 0.21%
Equation Out 5.35% 2.84% 1.27% 1.10% 9.15% 7.05% 0.27%

Wave In 2.51% 1.44% 1.51% 0.79% 2.26% 1.02% 0.63%
Equation Out 3.01% 1.79% 2.03% 1.36% 2.83% 1.77% 1.17%
Smooth In 7.09% 0.98% 0.49% 0.39% 1.14% 0.28% 0.24%

Transport Out 650.6% 875.4% 1.28% 0.96% 157.2% 3.90% 0.46%
Discontinuous In 13.0% 1.55% 1.31% 1.01% 5.78% 1.15% 1.01%

Transport Out 257.3% 22691.1% 1.35% 1.16% 117.1% 2.89% 1.09%
Allen-Cahn In 18.27% 0.77% 0.82% 1.40% 13.63% 0.28% 0.54%
Equation Out 46.93% 2.90% 2.18% 3.74% 19.86% 1.10% 2.23%

Navier-Stokes In 8.05% 4.14% 3.54% 3.69% 11.64% 3.57% 2.76%
Equations Out 16.12% 11.09% 10.93% 9.68% 15.05% 9.58% 7.04%

Darcy In 2.14% 0.86% 0.54% 0.42% 1.13% 0.80% 0.38%
Flow Out 2.23% 1.17% 0.64% 0.60% 1.61% 1.11% 0.50%

Compressible In 0.78% 2.09% 0.38% 1.70% 1.93% 0.44% 0.35%
Euler Out 1.34% 2.94% 0.76% 2.06% 2.88% 0.69% 0.59%

grid search for all baselines,

convolutional architectures very good across many PDEs,
if not interested in different grids, and structure preservation,
probably a good choice to consider UNets,
e.g. for Navier Stokes, 103−4 speedups wrt sota GPU codes

20/29

quantitative results

Table 1 – Relative median L1 test errors.
In/Out FFNN GT UNet ResNet DON FNO CNO

Poisson In 5.74% 2.77% 0.71% 0.43% 12.92% 4.98% 0.21%
Equation Out 5.35% 2.84% 1.27% 1.10% 9.15% 7.05% 0.27%

Wave In 2.51% 1.44% 1.51% 0.79% 2.26% 1.02% 0.63%
Equation Out 3.01% 1.79% 2.03% 1.36% 2.83% 1.77% 1.17%
Smooth In 7.09% 0.98% 0.49% 0.39% 1.14% 0.28% 0.24%

Transport Out 650.6% 875.4% 1.28% 0.96% 157.2% 3.90% 0.46%
Discontinuous In 13.0% 1.55% 1.31% 1.01% 5.78% 1.15% 1.01%

Transport Out 257.3% 22691.1% 1.35% 1.16% 117.1% 2.89% 1.09%
Allen-Cahn In 18.27% 0.77% 0.82% 1.40% 13.63% 0.28% 0.54%
Equation Out 46.93% 2.90% 2.18% 3.74% 19.86% 1.10% 2.23%

Navier-Stokes In 8.05% 4.14% 3.54% 3.69% 11.64% 3.57% 2.76%
Equations Out 16.12% 11.09% 10.93% 9.68% 15.05% 9.58% 7.04%

Darcy In 2.14% 0.86% 0.54% 0.42% 1.13% 0.80% 0.38%
Flow Out 2.23% 1.17% 0.64% 0.60% 1.61% 1.11% 0.50%

Compressible In 0.78% 2.09% 0.38% 1.70% 1.93% 0.44% 0.35%
Euler Out 1.34% 2.94% 0.76% 2.06% 2.88% 0.69% 0.59%

grid search for all baselines,
convolutional architectures very good across many PDEs,

if not interested in different grids, and structure preservation,
probably a good choice to consider UNets,
e.g. for Navier Stokes, 103−4 speedups wrt sota GPU codes

20/29

quantitative results

Table 1 – Relative median L1 test errors.
In/Out FFNN GT UNet ResNet DON FNO CNO

Poisson In 5.74% 2.77% 0.71% 0.43% 12.92% 4.98% 0.21%
Equation Out 5.35% 2.84% 1.27% 1.10% 9.15% 7.05% 0.27%

Wave In 2.51% 1.44% 1.51% 0.79% 2.26% 1.02% 0.63%
Equation Out 3.01% 1.79% 2.03% 1.36% 2.83% 1.77% 1.17%
Smooth In 7.09% 0.98% 0.49% 0.39% 1.14% 0.28% 0.24%

Transport Out 650.6% 875.4% 1.28% 0.96% 157.2% 3.90% 0.46%
Discontinuous In 13.0% 1.55% 1.31% 1.01% 5.78% 1.15% 1.01%

Transport Out 257.3% 22691.1% 1.35% 1.16% 117.1% 2.89% 1.09%
Allen-Cahn In 18.27% 0.77% 0.82% 1.40% 13.63% 0.28% 0.54%
Equation Out 46.93% 2.90% 2.18% 3.74% 19.86% 1.10% 2.23%

Navier-Stokes In 8.05% 4.14% 3.54% 3.69% 11.64% 3.57% 2.76%
Equations Out 16.12% 11.09% 10.93% 9.68% 15.05% 9.58% 7.04%

Darcy In 2.14% 0.86% 0.54% 0.42% 1.13% 0.80% 0.38%
Flow Out 2.23% 1.17% 0.64% 0.60% 1.61% 1.11% 0.50%

Compressible In 0.78% 2.09% 0.38% 1.70% 1.93% 0.44% 0.35%
Euler Out 1.34% 2.94% 0.76% 2.06% 2.88% 0.69% 0.59%

grid search for all baselines,
convolutional architectures very good across many PDEs,
if not interested in different grids, and structure preservation,
probably a good choice to consider UNets,

e.g. for Navier Stokes, 103−4 speedups wrt sota GPU codes

20/29

quantitative results

Table 1 – Relative median L1 test errors.
In/Out FFNN GT UNet ResNet DON FNO CNO

Poisson In 5.74% 2.77% 0.71% 0.43% 12.92% 4.98% 0.21%
Equation Out 5.35% 2.84% 1.27% 1.10% 9.15% 7.05% 0.27%

Wave In 2.51% 1.44% 1.51% 0.79% 2.26% 1.02% 0.63%
Equation Out 3.01% 1.79% 2.03% 1.36% 2.83% 1.77% 1.17%
Smooth In 7.09% 0.98% 0.49% 0.39% 1.14% 0.28% 0.24%

Transport Out 650.6% 875.4% 1.28% 0.96% 157.2% 3.90% 0.46%
Discontinuous In 13.0% 1.55% 1.31% 1.01% 5.78% 1.15% 1.01%

Transport Out 257.3% 22691.1% 1.35% 1.16% 117.1% 2.89% 1.09%
Allen-Cahn In 18.27% 0.77% 0.82% 1.40% 13.63% 0.28% 0.54%
Equation Out 46.93% 2.90% 2.18% 3.74% 19.86% 1.10% 2.23%

Navier-Stokes In 8.05% 4.14% 3.54% 3.69% 11.64% 3.57% 2.76%
Equations Out 16.12% 11.09% 10.93% 9.68% 15.05% 9.58% 7.04%

Darcy In 2.14% 0.86% 0.54% 0.42% 1.13% 0.80% 0.38%
Flow Out 2.23% 1.17% 0.64% 0.60% 1.61% 1.11% 0.50%

Compressible In 0.78% 2.09% 0.38% 1.70% 1.93% 0.44% 0.35%
Euler Out 1.34% 2.94% 0.76% 2.06% 2.88% 0.69% 0.59%

grid search for all baselines,
convolutional architectures very good across many PDEs,
if not interested in different grids, and structure preservation,
probably a good choice to consider UNets,
e.g. for Navier Stokes, 103−4 speedups wrt sota GPU codes

20/29

qualitative results

Poisson

Wave

Allen-Cahn

Navier-Stokes

Compressible
Euler

21/29

conclusion

highlighted discrepancies between discrete and continuous operations
in neural operators,

just as with any numerical method, we should pay attention to errors
introduced by discretization,

we have formulated a framework to take them into account,

we have proposed an accurate architecture to

can effectively link computations at different discretizations

22/29

conclusion

highlighted discrepancies between discrete and continuous operations
in neural operators,

just as with any numerical method, we should pay attention to errors
introduced by discretization,

we have formulated a framework to take them into account,

we have proposed an accurate architecture to

can effectively link computations at different discretizations

22/29

conclusion

highlighted discrepancies between discrete and continuous operations
in neural operators,

just as with any numerical method, we should pay attention to errors
introduced by discretization,

we have formulated a framework to take them into account,

we have proposed an accurate architecture to

can effectively link computations at different discretizations

22/29

conclusion

highlighted discrepancies between discrete and continuous operations
in neural operators,

just as with any numerical method, we should pay attention to errors
introduced by discretization,

we have formulated a framework to take them into account,

we have proposed an accurate architecture to

can effectively link computations at different discretizations

22/29

conclusion

highlighted discrepancies between discrete and continuous operations
in neural operators,

just as with any numerical method, we should pay attention to errors
introduced by discretization,

we have formulated a framework to take them into account,

we have proposed an accurate architecture to

can effectively link computations at different discretizations

22/29

limitations and future work

only considered perfect equivalence between discrete and continuous
→ relaxation to ε(G,G) ≤ ϵ ?

climate data often on different grids,
often different resolutions
there may be structures to preserve, e.g. conservation laws, etc,
can we learn one neural network for datasets at different resolutions ?
potentially useful to trade accuracy for compute and memory

thanks for your time !

23/29

limitations and future work

only considered perfect equivalence between discrete and continuous
→ relaxation to ε(G,G) ≤ ϵ ?

climate data often on different grids,
often different resolutions
there may be structures to preserve, e.g. conservation laws, etc,
can we learn one neural network for datasets at different resolutions ?
potentially useful to trade accuracy for compute and memory

thanks for your time !

23/29

limitations and future work

only considered perfect equivalence between discrete and continuous
→ relaxation to ε(G,G) ≤ ϵ ?

climate data often on different grids,
often different resolutions
there may be structures to preserve, e.g. conservation laws, etc,
can we learn one neural network for datasets at different resolutions ?
potentially useful to trade accuracy for compute and memory

thanks for your time !

23/29

Appendix

24/29

Representation equivalent neural operators (ReNO)

Representation equivalent neural operators (ReNO)

Couple (G ,G), such that the diagram commutes :

X Y

X Y

G

E E

G

R R

f =
∑
i∈I

ciΦi (x). discretize : f E−→ c , reconstruct : c R−→ f

{Φi}i∈I basis or frame spanning X ,Y,

i.e. discrepancy between continuous and discrete, aka aliasing

ε(G ,G) = G −R ◦ G ◦ E = 0,

X ,Y separable Hilbert spaces, e.g. bandlimited functions, spanned by
wavelets, fourier series coefficients, etc...

25/29

Representation equivalent neural operators (ReNO)

Representation equivalent neural operators (ReNO)

Couple (G ,G), such that the diagram commutes :

X Y

X Y

G

E E

G

R R

f =
∑
i∈I

ciΦi (x). discretize : f E−→ c , reconstruct : c R−→ f

{Φi}i∈I basis or frame spanning X ,Y,

i.e. discrepancy between continuous and discrete, aka aliasing

ε(G ,G) = G −R ◦ G ◦ E = 0,

X ,Y separable Hilbert spaces, e.g. bandlimited functions, spanned by
wavelets, fourier series coefficients, etc...

25/29

frame theory

synthesis and analysis operators

E : X → ℓ2(I), E({fi}i∈I) = {⟨f ,S−1fi ⟩}i∈I

R : ℓ2(I) → X , R({ci}i∈I) =
∑
i∈I

ci fi ,

S(f) =
∑
i∈I

⟨f , fi ⟩fi

definition : a frame
A countable sequence of vectors {fi}i∈I in X is a frame for X if there
exists constants A,B > 0 such that for all f ∈ X

A∥f ∥2 ≤
∑
i∈I

|< f , fi > |2 ≤ B∥f ∥2

e.g. orthogonal basis :A = B = 1,

26/29

frame theory

frame decomposition theorem
Every element in X can be uniquely and stably reconstructed from its
frame coefficients by means of the reconstruction formula

f = REf =
∑
i∈I

⟨f ,S−1fi ⟩fi =
∑
i∈I

⟨f , fi ⟩S−1fi , (1)

where the series converge unconditionally.

27/29

Ablation Study

28/29

ϵ−ReNO

29/29

	outline of the talk
	OUTLINE

